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Abstract A novel approach (TOMOCOMD-CARDD) to
computer-aided ‘‘rational’’ drug design is illustrated. This
approach is based on the calculation of the non-stochastic
and stochastic linear indices of the molecular pseudog-
raph’s atom-adjacency matrix representing molecular
structures. These TOMOCOMD-CARDD descriptors are
introduced for the computational (virtual) screening and
‘‘rational’’ selection of new lead antibacterial agents using

linear discrimination analysis. The two structure-based
antibacterial-activity classification models, including non-
stochastic and stochastic indices, classify correctly
91.61% and 90.75%, respectively, of 1525 chemicals in
training sets. These models show high Matthews corre-
lation coefficients (MCC=0.84 and 0.82). An external
validation process was carried out to assess the robustness
and predictive power of the model obtained. These
QSAR models permit the correct classification of 91.49%
and 89.31% of 505 compounds in an external test set,
yielding MCCs of 0.84 and 0.79, respectively. The TO-
MOCOMD-CARDD approach compares satisfactorily
with respect to nine of the most useful models for anti-
microbial selection reported to date. Finally, an in silico
screening of 87 new chemicals reported in the anti-infec-
tive field with antibacterial activities is developed showing
the ability of the TOMOCOMD-CARDD models to
identify new lead antibacterial compounds.
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Background

Drug discovery and development are highly complex
processes requiring the generation of large amounts of
data and information [1]. In the last decade, the phar-
maceutical giants believed they could sustain growth
indefinitely by dramatically increasing the rate of
bringing new medicines to market simply by increasing
spending and using the same research philosophies that
worked in the past. The discovery of new drugs by this
‘‘old equation’’ is becoming less favorable because of the
rise in expenditure [1, 2].
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At present, however, we are on the verge of an
exciting new age of drug discovery through cheminfor-
matics, in which large amounts of data are generated
using a variety of innovative technologies and the lim-
iting step is accessing, searching and integrating this data
[1–4]. The promise of cheminformatics is to reduce
development times by becoming more efficient in man-
aging the large amounts of data generated during a long
drug-discovery program. Further, with managed access
to all of the data, information and experience, discov-
eries are more likely and the expectation is that the
probability of technical success will increase [1–8].

There has already been quite a change in the way in
which drugs are discovered [5–11]. Particularly, the
search for antibacterial compounds has always been on
the desktop of molecular-modeling and drug-design
specialists. In spite of this intensive search, the discovery
of selective antibacterial agents has remained a largely
elusive goal of antimicrobial research. Subsequently,
new approaches are needed in order to make an efficient
search for candidates to be assayed as antibacterial
drugs. In this sense, several in silico methods have been
used to develop QSARs on antimicrobial activity [12–
17]. The effort in this area has been placed mainly into
the development of structure-based classification meth-
ods, utilizing pattern-recognition techniques (such as the
linear discriminant analysis (LDA), binary logistic
regression (BLR) analysis and artificial neural networks
(ANNs)) to predict biologically active molecules. Many
2D-physicochemical and structural descriptors were
calculated in these studies, to classify the compounds
into active (antibacterial) or inactive ones [12–17].
However, in all cases, the spectrum of structural patterns
(diversity of chemical families) considered was small.

On the other hand, due to the widespread use and
misuse of antibiotics, bacterial resistance to them has
become a serious public-health problem. Some of these
resistant strains, such as vancomycin-resistant entero-
cocci (VRE) and multidrug resistant Staphylococcus
aureus (MRSA), are capable of surviving the effects of
most, if not all, antibiotics currently in use [18–28]. This
recent increase in resistant bacterial infections has cre-
ated a critical need to develop novel antibacterial drugs
that elude existing mechanisms of resistance. For this
reason, many researchers worldwide have been inter-
ested in the search and evaluation of novel lead anti-
bacterial compounds [29–40].

In this context, our research group has recently
introduced a novel scheme to perform rational in silico
molecular designs (or selection/identification of lead
drug-like chemicals) and QSAR/QSPR studies, known
as TOMOCOMD-CARDD (acronym of TOpological
MOlecular COMputer Design-Computer Aided ‘‘Ra-
tional’’ Drug Design) [41].

This method has been developed to generate molec-
ular fingerprints based on the application of discrete
mathematics and linear algebra theory to chemistry. In
this sense, atomic, atom-type and total linear and qua-
dratic molecular fingerprints have been defined in anal-

ogy to linear and quadratic mathematical maps [42, 43].
This in silico method has been applied successfully to the
prediction of several physical, physicochemical and
chemical properties of organic compounds [42–45]. In
addition, TOMOCOMD-CARDD has been extended to
consider three-dimensional features of small/medium-
sized molecules based on the trigonometric-3D-chirality-
correction factor approach [46].

The latter opportunity has allowed the description of
significance-interpretation and comparison to other
molecular descriptors [43, 44]. The approach describes
changes in the electronic distribution with time
throughout the molecular backbone. Specifically, the
features of the kth total and local linear and quadratic
indices were illustrated by examples of various types of
molecular structures, including chain length and
branching, as well as content of heteroatoms and mul-
tiple bonds [43, 44]. Additionally, the linear indepen-
dence of the atom-type linear and quadratic fingerprints
to other 229 0D-3D ‘‘DRAGON’’ molecular descriptors
was demonstrated. That is to say, it was concluded that
the local fingerprints are independent indices containing
important structural information to be used in QSPR/
QSAR and drug design studies [43, 44].

The prediction of pharmacokinetical properties of
organic compounds is a problem that can also be ad-
dressed using this approach. In this sense, this method
has been used to estimate the intestinal–epithelial
transport of drugs in human adenocarcinoma of colon
cell line type 2 (Caco-2) cultures of a heterogeneous
series of drug-like compounds [47–49]. The results ob-
tained suggest that the TOMOCOMD-CARDD method
is able to predict the permeability values and it proved to
be a good tool for studying the oral absorption of drug
candidates during the drug development process.

The TOMOCOMD-CARDD strategy has also been
useful for selecting of novel subsystems of compoundswith
a desired property/activity. In this sense, it was applied
successfully to the virtual (computational) screening of
novel anthelmintic compounds, which were then synthe-
sized and evaluated in vivo on Fasciola hepatica [50, 51].

Studies for the fast-track discovery of novel pa-
ramphistomicides and antimalarial compounds were
also conducted with this theoretical approach [52, 53].

Later, promising results were obtained in modeling
the interaction between drugs and the HIV Y-RNA
packaging-region in the field of bioinformatics using the
TOMOCOMD-CANAR (Computed-Aided Nucleic Acid
Research) approach [54]. Finally, an alternative formu-
lation of our approach for structural characterization of
proteins was carried out recently [55, 56]. This extended
method [TOMOCOMD-CAMPS (Computed-Aided
Modeling in Protein Science)] was used to encompass
protein stability studies, specifically how alanine substi-
tution mutation on arc repressor wild-type protein af-
fects protein stability, by means of a combination of
protein linear or quadratic indices (macromolecular
fingerprints) and statistical (linear and non-linear model)
methods [55, 56].
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The main objectives of this paper are, first, to find
rationality in the search of novel antibacterial drug-like
compounds using non-stochastic and stochastic linear
indices, and second, but not less important, to continue
the validation of the method for describing the biologi-
cal activity of a heterogeneous series of compounds.

Theoretical approach

The theoretical framework of a TOMOCOMD-CARD-
Ds molecular descriptor family was split into two parts;
one for describing the mathematical features of non-
stochastic and the other for stochastic linear indices.

Atomic, atom-type, and total non-stochastic linear
indices

The atomic, atom-type and total linear indices (non-
stochastic) of the ‘‘molecular pseudograph’s atom-
adjacent matrix’’ for small-to-medium-sized organic
compounds have been explained elsewhere in some de-
tail [43]. However, an overview of this approach will be
given.

For a given molecule composed of n atoms, the
‘‘molecular vector’’ (X) is constructed and the kth
atomic linear indices, fk(xi) are calculated as linear maps
on <n [fk(xi): <n fi <n; thus fk(xi): Endomorphism on
<n] in a canonical basis as shown in Eq. 1:

fkðxiÞ ¼
Xn

j¼1

kaijXj ð1Þ

where, kaij=
kaji (symmetrical square matrix), n is the

number of atoms in the molecule, and X1,..., Xn are the
coordinates or components of the ‘‘molecular vector’’
(X) in a canonical basis set of <n. The components of the
‘‘molecular’’ vector are numerical values, which can be
considered as weights (atom-labels) for the vertices of
the pseudograph. Different weighting schemes can be
used with this purpose, such as: (1) the atomic masses,
(2) the van-der-Waals volumes, (3) the Pauling atomic
electronegativities, (4) the atomic polarizabilities, and so
on [57]. In this work, the Pauling electronegativities were
selected as atom weights because they take into account
the electronic features of each atom in the molecule, and
permit adequately differentiating among atoms [58].

The coefficients k aij are the elements of the kth power
of the symmetrical square matrix M(G) of the molecular
pseudograph (G), and are defined as follows [42–53]:

aij ¼ Pij if i 6¼ j and 9 ek 2 EðGÞ
¼ Lii if i ¼ j

¼ 0 otherwise

where E(G) represents the set of edges of G. Pij is the
number of edges (bonds) between vertices (atoms) vi and
vj, and Lii is the number of loops in vi (see Table 1).

Notice that atomic linear indices are defined as a
linear transformation fk(xi) on a molecular vector space
<n. This map is a correspondence that assigns a vector
f(x) to every vector X in <n, in such a way that

f ðk1X1 þ k2X2Þ ¼ k1f ðX1Þ þ k2f ðX2Þ ð3Þ

for any scalar pair (k1, k2) and any vector pair (X1, X2) in
<n. The defining Eq. 1 for fk(xi) may be written as the
single matrix equation:

fkðxiÞ ¼ ½X 0�k ¼Mk½X � ð4Þ

where [X] is a column vector (a nx1 matrix) of the
coordinates of X in the canonical basis of <n and Mk,
the kth power of the matrix M of the molecular pseud-
ograph (map’s matrix).

Notice that this approach is rather similar to the
LCAO-MO (Linear Combination of Atomic Orbitals-
Molecular Orbital) method. Really, our approach (for
k=1) is a quite similar approximation to the Hückel
MO method due to the fact that, in our formalism, each
MO wi consists of n valence atomic orbitals (AOs) in the
molecule.

The main idea of the LCAO-MO method is that the
electrons in a molecule are accommodated in definite
MOs, just as those in an atom are accommodated in
definite AOs. Normally, MOs are made up as LCAO of
the atoms composing the system, i.e., it can be written in
the form:

wi ¼
Xn

j¼1
cijuj ð5Þ

where i is the number of the MO w [in our case, f1(xi)];
j is the numbers of the atomic /1-orbitals (in our case,
Xj); cij (in our case, 1aij) are the numerical coefficients
defining the contributions of individual AOs into the
given MO. Such a way of constructing an MO is based
on the assumption that an atom, represented by a defi-
nite set of orbitals, remains distinctive in the molecule.

Total (whole-molecule) linear indices are linear
functionals (some mathematicians use the synonym lin-
ear form) on <n. That is to say, the kth total linear index
is a linear map from <n to the scalar < [fk(x): <n fi <].
The mathematical definition of these molecular de-
scriptors is:

fkðxÞ ¼
Xn

i¼1
fkðxiÞ ð6Þ

where n is the number of atoms, and fk(xi) are the atomic
linear indices (linear maps) obtained by Eq. 1. Then, a
linear form fk(x) can be written in matrix form:

fkðxÞ ¼ ½u�t½X 0�k ð7Þ

or

fkðxÞ ¼ ½u�tMk½X � ð8Þ
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for each molecular vector X 2<n. Vector [u]t is an n-
dimensional unitary row vector. As can be seen, the kth
total linear index is calculated by adding the local
(atomic) linear indices for all atoms in the molecule.

In addition to atomic linear indices computed for each
atom in the molecule, a local-fragment (atom-type) for-
malism can be developed. The kth atom-type linear index
of the molecular pseudograph’s atom-adjacency matrix is
calculated by adding the kth linear indices of all atoms of
the same type in the molecule. Consequently, if a mole-
cule is partitioned into Z molecular fragments, the total

linear indices can be partitioned intoZ local linear indices
fkL(x),L=1,...,Z. That is to say, the total linear indices of
order k can be expressed as the sum of the local linear
indices of the Z fragments of the same order:

fkðxÞ ¼
XZ

L¼1
fkLðxÞ ð9Þ

In the atom-type linear indices formalism, each atom
in the molecule is classified into an atom-type (frag-

Table 1 Calculation of Mk (G) and S
k (G) for 2-formyl-6-methyl-benzonitrile, when k varies from 0 to 2, and i is a specific atom in the

molecule

N

CHO

CN

CH3

12

3

4

5

6

7

8

9 10

11
Molecular Structure 

O1

C2
C3

C4

C5

N6

C7

C8

C9

N10

C11

Molecular Pseudograph (G)

aij O1 C2 C3 C4 C5 N6 C7 C8 C9 N10 C11 kdI O1 C2 C3 C4 C5 N6 C7 C8 C9 N10 C11

M0 (G) S0 (G)
O1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
C2 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
C3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
C4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
C5 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
N6 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
C7 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
C8 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
C9 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
N10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
C11 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

M1 (G) S1 (G)
O1 0 2 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
C2 2 0 1 0 0 0 0 0 0 0 0 3 0.66 0 0.33 0 0 0 0 0 0 0 0
C3 0 1 1 1 0 0 0 1 0 0 0 4 0 0.25 0.25 0.25 0 0 0 0.25 0 0 0
C4 0 0 1 1 1 0 0 0 0 0 0 3 0 0 0.33 0.33 0.33 0 0 0 0 0 0
C5 0 0 0 1 1 1 0 0 0 0 0 3 0 0 0 0.33 0.33 0.33 0 0 0 0 0
N6 0 0 0 0 1 1 1 0 0 0 0 3 0 0 0 0 0.33 0.33 0.33 0 0 0 0
C7 0 0 0 0 0 1 1 1 0 0 1 4 0 0 0 0 0 0.25 0.25 0.25 0 0 0.25
C8 0 0 1 0 0 0 1 1 1 0 0 4 0 0 0.25 0 0 0 0.25 0.25 0.25 0 0
C9 0 0 0 0 0 0 0 1 0 3 0 4 0 0 0 0 0 0 0 0.25 0 0.75 0
N10 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 1 0 0
C11 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

M2 (G) S2 (G)
O1 4 0 2 0 0 0 0 0 0 0 0 6 0.66 0 0.33 0 0 0 0 0 0 0 0
C2 0 5 1 1 0 0 0 1 0 0 0 8 0 0.625 0.125 0.125 0 0 0 0.125 0 0 0
C3 2 1 4 2 1 0 1 2 1 0 0 14 0.143 0.071 0.287 0.143 0.071 0 0.071 0.143 0.071 0 0
C4 0 1 2 3 2 1 0 1 0 0 0 10 0 0.1 0.2 0.3 0.2 0.1 0 0.1 0 0 0
C5 0 0 1 2 3 2 1 0 0 0 0 9 0 0 0.111 0.222 0.333 0.222 0.111 0 0 0 0
N6 0 0 0 1 2 3 2 1 0 0 1 10 0 0 0 0.1 0.2 0.3 0.2 0.1 0 0 0.1
C7 0 0 1 0 1 2 4 2 1 0 1 12 0 0 0.083 0 0.083 0.166 0.333 0.166 0.083 0 0.083
C8 0 1 2 1 0 1 2 4 1 3 1 16 0 0.063 0.125 0.063 0 0.063 0.125 0.25 0.063 0.188 0.063
C9 0 0 1 0 0 0 1 1 10 0 0 13 0 0 0.077 0 0 0 0.077 0.077 0.769 0 0
N10 0 0 0 0 0 0 0 3 0 9 0 12 0 0 0 0 0 0 0 0.25 0 0.75 0
C11 0 0 0 0 0 1 1 1 0 0 1 4 0 0 0 0 0 0.25 0.25 0.25 0 0 0.25
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ment), such as heteroatoms (O, N and S), hydrogen
bonding (H-bonding) to heteroatoms, halogen atoms,
aliphatic carbon chain, aromatic atoms (aromatic rings),
and so on. For all data sets, including those with a
common molecular scaffold as well as those with diverse
structure, the kth fragment (atom-type) linear indices
provide much useful information.

Atomic, atom-type, and total stochastic linear indices

Notice that the linear indices matrices, Mk, are graph-
theoretical electronic-structure models, like the ‘‘ex-
tended Hückel MO model’’. The M1 matrix considers all
valence-bond electrons (r- and p-networks) in one step,
and their power k (k=0, 1, 2, 3,...) can be considered as
an interacting-electronic chemical-network in step k.
This model can be seen as an intermediate one between
the quantitative quantum-mechanical Schrödinger
equation and classical chemical bonding ideas [59].

The present approach is based on a simple model for
the intramolecular (stochastic) movement of all outer-
shell electrons. Let us consider a hypothetical situation
in which a set of atoms is free in space at an arbitrary
initial time (t0). In this time, the electrons are distributed
around atomic nuclei. Alternatively, these electrons can
be distributed around cores in discrete intervals of time
tk. In this sense, the electron in an arbitrary atom i can
move to other atoms at different discrete time periods tk
(k=0, 1, 2, 3,...) throughout the chemical-bonding net-
work.

The kth stochastic molecular pseudograph’s atom
adjacency matrix [Sk(G)] can be obtained from Mk.
Here, Sk(G)=Sk=[ksij] is a squared table of order n
(n=number of atoms), and the elements k sij are defined
as follows:

ksij ¼
kaij

kSUMi
¼

kaij
kdi

ð10Þ

where kaij are the elements of the kth power of M, and
the SUM of the ith row of Mk are named the k-order
vertex degree of atom i, kdi. The kth sij elements are the
transition probabilities to which electrons moving from
atom i to j in the discrete time period tk. Notice that the
kth elements sij take into account the molecular topology
in step k throughout the chemical-bonding (r- and p-
network). For instance, the 2sij values can distinguish
between hybrid states of atoms in bonds. In this sense, it
can clearly be seen from Table 1 that electrons will have
a higher probability of returning to the sp N atom
[p(N10)=0.75] than to the sp2 N atom [p(N6)=0.33] in
t2. A similar behavior can be observed among the dif-
ferent hybrid states of C atoms in the molecule of
2-formyl-6-methyl-benzonitrile (see Table 1): Csp3

[p(C11)=0.25]; Csp2 [p(C2)=0.625]; Csp2 arom [p(C3)=
0.285, p(C4)=0.3, p(C5)=0.33, p(C7)=0.33, p(C8)=
0.25]; and Csp [p(C9)=0.769]. This is a logical result as
the electronegativity scale of these hybrid states is taken

into account. The kth total [and local (atomic and atom-
type) stochastic linear indices], s fk(x) [

s fk(xi)] are cal-
culated in the same way that the linear indices (non-
stochastic), but using the kth stochastic molecular
pseudograph’s atom adjacency matrix, Sk(G), as math-
ematical linear maps’ matrices.

Materials and methods

Computational methods: TOMOCOMD-CARDD
approach

TOMOCOMD is an interactive program for molecular
design and bioinformatic research [41]. It is composed
by four subprograms’ each of which allows drawing the
structures (drawing mode) and calculating molecular
2D/3D (calculation mode) descriptors. The modules are
named Computed-aided ‘‘Rational’’ drug design
(CARDD), Computed-aided modeling in protein science
(CAMPS), Computed-aided nucleic acid research (CA-
NAR) and Computed-aided bio-polymers docking
(CABPD). In the present report, we outline salient fea-
tures concerned with only one of these subprograms:
CARDD.

The calculation of the total and local linear indices
of any organic molecule was implemented in the
TOMOCOMD-CARDD software [41]. The main steps
for the application of this method in QSAR/QSPR
and drug design can be summarized briefly as fol-
lows.

1. Draw the molecular pseudographs for each molecule
of the data set, using the software drawing mode.
This procedure is performed by a selection of the
active atomic symbol belonging to the different
groups in the periodic table of the elements.

2. Use appropriate weights in order to differentiate the
molecular atoms. In this study, we used the Pauling
electronegativity [58] as atomic property for each
kind of atom.

3. Compute the total and local (atomic and atom-type)
linear indices of the molecular pseudograph’s atom-
adjacency matrix. This can be carried out in the
software calculation mode, where the user can select
the atomic properties and the descriptor family prior
to calculating the molecular indices. This software
generates a table in which the rows correspond to the
compounds, and columns correspond to the total and
local linear indices or other molecular-descriptors
family implemented in this program.

4. Find a QSPR/QSAR equation by using several mul-
tivariate analytical techniques, such as multilinear
regression analysis (MRA), neural networks (NN),
linear discrimination analysis (LDA), and so on. That
is to say, we can find a quantitative relation between
an activity A and the linear indices having, for in-
stance, the following appearance:
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A ¼ a0f0ðxÞ þ a1f1ðxÞ þ a2f2ðxÞ þ � � � þ akfkðxÞ þ c

ð11Þ

where A is the measured activity, fk(x) are the kth total
linear indices, and the ak’s are the coefficients obtained
by the linear regression analysis.
5. Test the robustness and predictive power of the

QSPR/QSAR equation by using internal (leave-one-
out cross-validation) and external (using a test set
and an external predicting set) validation techniques.

The following descriptors were calculated in this
work.

1. fk(x) and fk
H(x) are the kth total linear indices not

considering and considering H-atoms in the molecu-
lar pseudograph (G), respectively.

2. fkL(xE) and fkL
H (xE) are the kth local (atom-

type=heteroatoms: S, N, and O) linear indices not
considering and considering H-atoms in the molecu-
lar pseudograph (G), respectively. These local de-
scriptors are putative H-bonding acceptors.

3. fkL
H (xE-H) are the kth local (atom-type = H-atoms
bonding to heteroatoms: S, N, and O) linear indices
considering H-atoms in the molecular pseudograph
(G). These local descriptors are putative H-bonding
donors.

The kth stochastic total [sfk(x) and
sfk
H(x)] and local

[sfk(xE),
sfk
H(xE) and sfk

H(xE-H)] linear indices were also
computed.

Data set selection

The general performance of the current method depends
decisively on the selection of compounds for the training
series used to build the classifier model. The most critical
aspect for constructing the training set is to guarantee
wide molecular diversity in this data set. With this aim,
we selected a large data set of 2,030 chemicals having
great structural variability; 1,006 of them are active
(antibacterial agents) and the others are non-antibacte-
rial (1,024 compounds with other clinical uses, such as
antivirals, sedative/hypnotics, diuretics, anticonvulsi-
vants, haemostatics, oral hypoglycemics, antihyperten-
sives, antihelminthics, anticancer compounds and so on)
[60–62]. The classification of these compounds as
‘‘inactive’’ (without antibacterial activity) does not
guarantee that any of these compounds show undetected
antimicrobial activity.

On the other hand, the data set of active compounds
was selected by considering representatives of most of
the different structural patterns and action modes of
antibacterial activity. For instance, it includes antimi-
crobial agents that interfere with the synthesis or action
of folate (sulphonamides and dihydrofolate reductase
inhibitors such as trimethoprim), b-lactam antibiotics
(cephalosporins, cephamycins, penicillins, monobac-
tamams and carbapenems), antimicrobial agents

affecting bacterial protein synthesis (tetracyclines,
phenicols, aminoglycosides, macrolides, and lincosa-
mides), chemicals affecting DNA girase (quinolones),
miscellaneous antibacterial agents (vancomycin, poly-
mixim antibiotics, nitrovinylfurans, and bacitracin) and
so forth. Other compounds that have no specific mode
of action, but have been reported as antibacterial agents,
were also included [60–62]. Figure 1 shows a represen-
tative sample of such compounds.

Later, two k-means cluster analyses (k-MCA) were
performed for active and inactive series of chemicals,
which allowed the dataset (2030 chemicals) to be split
into training and predicting series [63, 64]. That is to say,
all cases were processed using k-MCA in order to design
training and predicting data series in a ‘‘rational’’ way.
The main idea consists of carrying out a partition of
either active or inactive series of chemicals in several
statistically representative classes of chemicals. Thence,
one may select from the members of all these classes of
training and predicting series. This procedure ensures
that any chemical class (as determined by the clusters
derived from k-MCA) will be represented in both series
of compounds. Finally, an external cross-validation set
of 87 novel antimicrobial agents was taken from recent
Refs. [65, 66].

Chemometric method

The statistical software package STATISTICA was used
to develop the k-MCA [67]. The number of members in
each cluster and the standard deviation of the variables
in the cluster (kept as low as possible) were taken into
account, to have an acceptable statistical quality of data
partition in clusters. We also inspected of the standard
deviation (SS) between and within clusters, of the Fisher
ratios and their p-levels of significance, which were
considered if lower than 0.05 [63, 64].

Afterward, a simple linear QSAR using the TOMO-
COMD-CARDD method whith the general formula
depicted in Eq. 11 was developed. The statistical anal-
ysis was also carried out with the STATISTICA soft-
ware [67]. The tolerance parameter (proportion of
variance that is unique to the respective variable) or the
default value for minimum acceptable tolerance was
taken as 0.01. Forward stepwise was fixed as the strategy
for variable selection. The principle of parsimony (Oc-
cam’s razor) was taken into account as a strategy for
model selection. In this connection, we selected the
model with a high statistical significance but as few
parameters (ak) as possible and the maximizes the de-
grees of freedom. In Eq. 11, ak are the coefficients of the
classification function, determined by the least squares
method as implemented in LDA modulus of STATIS-
TICA [67].

The quality of the models were determined by
examining Wilks’ k parameter (U-statistic), square Ma-
halanobis distance (D2), Fisher ratio (F) and the corre-
sponding p-level (p(F)), as well as the percentage of good
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classification in the training and test sets. Those models
with a proportion lower than five between the number of
cases and variables in the equation were rejected.

Wilks’ k statistics are helpful to evaluating the total
discrimination, and can take values between zero (per-
fect discrimination) and one (no discrimination). D2

indicates the separation of the groups. The biological
activity (antibacterial in this case) was codified by a
dummy variable ‘‘Class’’. This variable indicates the
presence of either an active compound (Class=1) or an
inactive compound (Class=�1).

The classification of cases was performed by means of
posterior classification probabilities. This is the proba-
bility to which the case being considered belongs to a
particular group (active or inactive) and it is propor-
tional to the Mahalanobis distance from that group
centroid. On completion, the posterior probability is the
probability, based on our knowledge of the values of
others variables, with which this case belongs to a par-
ticular group. By using the models, one compound can
then be classified as active, if DP%>0, being
DP%=[P(active)�P(inactive)] · 100 or as inactive
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otherwise. P(active) and P(inactive) are the probabilities
to which the equations classify a compound as active
and inactive, respectively.

On the other hand, validation is a crucial aspect of
any QSAR/QSPR modeling [68, 69]. One of the most
popular validation criteria is the leave-one-out (LOO)
cross-validation method (internal validation). This
method systematically removes one data point at a time
from the data set. A QSAR/QSPR model is then con-
structed based on this reduced data set and subsequently
used to predict the removed data point. This procedure
is repeated until a complete predicted set is obtained.
Good results in this experiment can be considered as a
proof of the high predictive ability of the models.
However, this assumption is generally incorrect, as there
may be a lack of correlation between good LOO results
and high predictive ability of QSAR/QSPR models [68,
69]. Thus, the good behavior of models in an LOO
procedure appears to be a necessary but not sufficient
condition for models to have a high predictive power. In
this sense, Golbraikh and Tropsha [69] emphasized that
the predictive ability of a QSAR/QSPR model can be
estimated using only a test set (external validation) of
compounds that were not used for building the model,
and formulated a set of criteria for the evaluation of the
predictive ability of a QSAR/QSPR model. For this
reason, in order to assess the predictability of the model
obtained, external validation procedures were carried
out. In this sense, the statistical robustness and predic-
tive power of the model obtained was assessed using a
prediction (test) set. Later, an external test set of 87
compounds was also used, in order to assess the pre-
dictive ability of the LDA models obtained [65, 66].

Finally, the calculation of percentages of global good
classification (accuracy), sensibility, specificity (also

known as ‘‘hit rate’’), false positive rate (also known as
‘‘false alarm rate’’), and Matthews correlation coefficient
(MCC) in the training and test sets allows assessment of
the model [70].

Results and discussions

Training and test sets design through k-means cluster
analysis

The first step in this study was the design of the training
and predicting series to prevent a non-random distri-
bution of chemicals between the two sets. This was
achieved using k-MCA [63, 64]. This ‘‘rational’’ design
of training and predicting series allowed us to design the
two sets that are representative of the entire ‘‘experi-
mental universe.’’

We first carried out a k-MCA with active compounds
and afterwards with inactive ones. A first k-MCA (I)
split antibacterials into 20 clusters with 22, 55, 45, 56, 23,
55, 92, 21, 61, 97, 38, 4, 72, 66, 9, 76, 67, 81, 47, and 19
members. On the other hand, the inactive compound
series was also partitioned into 20 clusters (k-MCA II)
with 39, 58, 37, 41, 53, 105, 72, 30, 85, 74, 17, 69, 16, 38,
61, 75, 41, 4, 98, and 19 members.

Then, selection of the training and prediction sets was
performed by taking, in a random way, compounds
belonging to each cluster. In this sense, the training set
was composed by 754 antibacterials and 771 non-anti-
bacterials from a set of 2030 chemicals. The remaining
subseries were used as test series, containing 252 active
and 253 inactive compounds. Figure 2 shows above-
described procedure graphically, where two independent
cluster analyses (one for active and the other for inactive
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compounds) were performed to select a representative
sample for the training and test sets.

The kth total and atom-type non-stochastic linear
indices were used with all variables showing p-levels of
<0.05 for the Fisher’s test. The results are depicted in
Table 2.

From the k-MCA, it can be concluded that the
structural diversity of several up-to-date known anti-
bacterials (as codified by TOMOCOMD-CARDD de-
scriptors) may be described at least by 20 statistically
homogeneous clusters of chemicals.

Development of the discrimination functions

The best discrimination functions obtained, using non-
stochastic and stochastic linear indices, for the training
set are given below:

Class¼�3:5624þ0:02f2ðxÞþ2:5243�10�4f H
5 ðxÞ

�1:7735�10�4f H
6 ðxÞþ6:9103�10�6f10LðxE�HÞ

þ0:0934f H
0LðxEÞ�0:028f H

2 ðxEÞ
þ3:6536�10�6f H

11L
ðxEÞ�8:4662�10�7f H

12L
ðxEÞ
ð12Þ

Class ¼ �3:5371� 2:9254sf11ðxÞ þ 3:0342sf15ðxÞ
þ 0:6676sf H

0 ðxÞ � 1:3212sf H
2 ðxÞ þ 0:6092sf H

3 ðxÞ
� 0:72sf H

12L
ðxEÞ � 0:0640sf14LðxEÞ

þ 0:9476sf H
15LðxEÞ

N ¼ 1525; k ¼ 0:47; D2 ¼ 4:53;

F ð8:1516Þ ¼ 214:82; p\0:0001 ð13Þ

where N is the number of compounds, k is the Wilks’
coefficient, F is the Fisher’s ratio, D2 is the squared
Mahalanobis distance and p-value is the significance
level.

In Table 3, we show the results obtained in the classi-
fication of compounds of the training set by both equa-
tions. Here, we illustrate only a small quantity of the 1525
chemicals (754 antibacterial and 771 non-antibacterial)
that were used in the development of the discrimination
functions. The complete set of compounds in these series,
as well as their classification using both models is given as
‘‘Electronic supplementary material’’. In these sets, 2.75%
(42/1525) and 4.26% (65/1525) of compounds were clas-
sified as false antibacterials and the 5.64% (86/1525) and
4.98% (76/1525) as false inactives, by Eqs. 12 and 13,
respectively. False active and false inactive compounds are
those that the model predicts as active or inactive, and
they are inactive and active, correspondingly. The overall
accuracy of the models (12) and (13) are respecting
91.61% (1397/1525) and 90.75% (1384/1525) for the
training sets. Table 4 summarizes the results of the clas-
sifications for both models in the training sets.

One of the most important aspects of any quantita-
tive structure-property model is its ability to predict the
studied property for compounds not included in the
training set. When the discrimination functions (Eqs. 12
and 13 are applied to the test sets of 505 (252 antibac-
terial and 253 non-antibacterial) chemicals we obtained
the following results. The percentage of false actives and
false inactives obtained by Eq. 12 Eq. 13 were 1.98%
(10/505) [4.75% (24/505)] and 6.54% (33/505) [5.94%
(30/505)], respectively. The overall accuracy of the
models (12) and (13) in the test sets were 91.49% (462/
505) and 89.31% (451/505), correspondingly. In Table 5,
we give the classification of some compounds in the
prediction sets obtained by Eqs. 12 and 13. The com-
plete set of chemicals in these series as well as their
classification using both models is also given as ‘‘Elec-
tronic supplementary material’’. Table 4 summarizes the
results of the classifications for both models in the test
sets. This table also list most parameters commonly used
in medical statistics (accuracy, sensitivity, specificity and
false positive rate) and the MCC for both models
obtained [70]. While the sensitivity is the probability of

Table 2 Main results of the k-means cluster analysis, for antibacterial and non-antibacterial chemicals

Analysis of variance

Total and atom-type linear indices Between SSa Within SSb Fisher ratio (F) p-Levelc

Antibacterial agents clusters (k-MCA I)
f6
H (x) 862.53 163.83 273.21 0.00

f11L
H (xE) 1467.19 86.25 882.77 0.00

f12L
H (xE) 1475.90 85.83 892.38 0.00
f10L(xE-H) 1036.05 346.56 155.14 0.00

Non-antibacterial agents clusters (k-MCA II)
f6
H (x) 512.90 38.14 716.29 0.00

f11L
H (xE) 132.12 17.34 405.88 0.00

f12L
H (xE) 131.99 16.23 433.18 0.00
F10L(xE-H) 174.72 27.29 340.98 0.00

aVariability between groups
bVariability within groups
cLevel of significance
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predicting a positive example correctly, the specificity is
the probability that a positive prediction is correct. On
the other hand, MCC quantifies the strength of the lin-

ear relation between the molecular descriptors and the
classifications, and it may often provide a much more
balanced evaluation of the prediction than, for instance,

Table 3 Results of the classification of compounds in the training sets

Active compounds name DPa (%) Inactive compounds name DPa (%)

Non-Stoch Stoch Non-Stoch Stoch

Mefuralazine 84.60 65.84 Amantadine �87.46 �94.14
Sulfathiadiazole 96.97 40.83 Cetohexazine �57.14 �46.04
Glycylsulfanilamide 70.72 23.48 Paraldehyde �89.53 �93.21
Septosil 94.76 50.80 Ethchlorvynol �86.78 �79.57
Mepartricin A 97.54 49.91 Thiacetazone �20.17 �18.74
Rifabutin 99.85 99.71 Ectylurea �83.79 �80.08
Furidiazina 79.86 79.41 Mtrafazoline �93.90 �92.43
Myxin 98.01 64.21 Bromobutanol �77.42 0.82
Demethylthiolutin 67.73 47.52 Trichlorourethan �76.41 7.92
Cefazolin 98.38 99.62 Isopral �80.73 �48.91
Aldanil 72.20 45.64 Vernelan �62.96 �9.62
Bluensomycin 97.81 99.32 Colestipol �92.08 �90.51
Nitrofurantoin 68.90 72.30 Alcabrol �81.96 �69.47
Furalazine 87.34 76.74 Oxazidione �84.26 �83.78
Melarsenoxyd 99.29 84.32 Beclamide �88.85 �93.34
Tetracycline 95.44 97.34 Buramate �90.10 �96.44
Melarsen 99.06 94.57 Pheneturide �87.73 �88.08
Chlorozotocin 11.17 86.76 Primidone �86.08 �84.62
Dipyrithione 95.65 24.18 Ferrosi fumaras �62.88 �37.88
Akritoin 63.41 64.67 Iron aspartate �62.96 �9.62
Amikacin sulfate 97.56 99.01 Clocapramine �57.86 �88.65
Rifordin 99.79 99.71 Fructosum Ferricum �51.60 �49.44
Coumamycin 100.00 100.00 Diciferron �84.92 �75.79
Esperine 99.56 99.42 Assedil �87.88 �95.61
Nifurdazil 45.74 37.23 Besunide 66.86 71.38
Alfasol 95.61 75.74 Canrenone �81.40 �69.24
Cordycepin 87.46 34.47 Acustasin �66.76 �45.84
Carbadox 98.39 72.36 Merbiurelidin �78.89 5.67
Tevenel 85.88 81.00 Pallirad �87.38 �75.25
Azotomycin 93.48 98.84 Peucedanin �53.54 �15.63
Bemural 93.41 78.65 Etomoxir �46.96 �59.54
Actinomycin D 99.99 100.00 Guaifenesin �74.81 �81.19
Dapsone 86.20 34.30 Tiforminhydrochloride �73.14 �66.50
Ciprofloxacin hydrochloride �54.67 11.54 Amformin �73.58 �85.04
Temodox 97.11 53.90 Etoformin hydrochloride �79.64 �87.46
Thiamphenicol 72.55 74.54 Clonidine hydrochloride �3.87 �37.14
Isoniazid sodium glucuronate 75.83 60.80 Olmidine �14.25 �30.89
Acrotiazol �15.17 18.15 Triacctonamine �78.83 �65.06
Dirithromycin 84.56 93.38 Dipropamine �93.81 �99.11
Astreonam 91.36 98.05 Metadiphenii bromidum �95.74 �97.58
Glucose-INH 58.25 26.41 Tolonidine nitrate �46.34 �64.51
Rokitamycin 88.90 83.55 Stilonium iodide �96.94 �98.09
Neamine 42.28 66.53 Quateron �83.71 �87.57
Lenigron 86.48 87.86 Roflurane �76.04 �34.82
Clobromsalan 40.80 29.50 Benzochinoniumchlorid �41.06 �91.20
aClassification of compounds by both models, Eq. 12 (non-Stoch.) and Eq. 13 (Stoch.): DP% = [P(active) � (inactive)] · 100

Table 4 Global results of the classification of compounds in the training and test sets

Matthews corr.
coefficient

Accuracy ‘‘QTotal’’
(%)

Sensitivity
‘‘hit rate’’ (%)

Specificity
(%)

False positive rate
‘‘false alarm rate’’ (%)

Non-stochastic descriptors (Eq. 12)
Training set 0.84 91.61 88.59 94.08 5.44
Test set 0.84 91.49 86.90 95.63 3.95

Stochastic descriptors (Eq. 13)
Training set 0.82 90.75 89.92 91.25 8.43
Test set 0.79 89.31 88.10 90.24 9.48
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the percentages [70]. The models obtained, Eqs. 12 and
13, showed a high MCC of 0.84 (0.84) and 0.82 (0.79) in
training and test sets, respectively.

TOMOCOMD-CARDD method versus other
cheminformatic approaches

Recently, several in silico methods have been used to
develop structure-based classification models of anti-
microbial activity, which give rise to good discrimina-
tion of this activity in large and heterogeneous series of
organic compounds [12–17]. However, because of dif-
ferences in the composition of experimental data and

chemometric methods used to carry out the QSAR, it is
not feasible to perform a comparison among the
models reported in the literature for the selection of
antibacterial agents. For this reason, a ‘‘strict’’ com-
parison between the methodologies is not possible.
Thus, a relative comparison will be based on the kind
of method used to derive the QSARs and their statis-
tical parameters, the explored molecular descriptors,
the number and diversity of chemical structural pat-
terns contained in the data, the overall accuracy (%)
and the validation method used. Table 6 shows the
comparison between the TOMOCOMD-CARDD
method and other reported approaches for antimicro-
bial activity.

Table 5 Results of the classification of compounds in the test sets

Active compounds name DP%a Inactive compounds name DP%a

Non-Stoch Stoch Non-Stoch Stoch

Tio-Urasin 96.63 59.32 PALA �38.85 �30.35
Chloramphenicol 29.74 47.26 Foscarnet �30.00 38.31
Furazonal 66.56 44.94 Moroxidine �67.85 �82.02
Solupront 96.32 59.84 Urethane �91.87 �94.20
Sulfamethoxypyridazine 98.90 61.56 Methenamine �98.21 �97.36
MSD-819 98.66 83.08 Amylurea �90.70 �86.46
Chiniofon 83.32 51.79 Penthrichloral �65.42 �39.36
Thiazosulfone 98.00 77.46 MECap �89.28 �85.21
Sulfamethizole 92.01 93.25 Norantoin �80.75 �82.37
Nifurprazine 74.57 59.63 Mephenytoin �77.33 �76.66
Cinerubin A 98.34 99.81 Promoxolane �84.45 �78.16
FCE 22101 42.60 79.26 Sodium dipantoylferrate �72.47 �37.35
Furamizole 87.44 88.13 Prorenone �80.43 �67.28
Pyrimethamine 59.76 41.60 Pamabron �88.89 �75.88
Bicozamycin 89.64 87.93 Propamin’’soviet �92.02 �88.78
Erythromycin C 91.13 93.60 Dopamine �62.90 �56.41
Cefmetazole 97.42 99.60 BAEA �82.31 �69.01
Diploicin 96.94 99.04 Pentacynium chloride �97.79 �98.67
Cefadroxil 84.65 86.17 Oxaditon �96.59 �98.15
Ampicillin 51.88 53.93 Tiamethonium iodide �97.11 �96.66
Baludon 99.85 86.24 Penhexamine �94.18 �91.26
Azoseptyl-T 95.93 93.03 Teflurane �70.39 �33.63
Azosulfanilamide 100.00 99.92 Neothyl �94.46 �95.82
Arsutyl 99.97 88.67 Anatiroidol �90.07 �85.85
Fluoropolyoxin L 99.72 99.69 Cathine �88.85 �86.55
Picloxydine 92.89 60.16 Cyclocumarol �83.78 �28.72
Flucloxacillin 96.91 99.01 Carbimazole �84.34 �74.78
Streptothricin F 94.60 95.74 Auxinutril �87.50 �88.13
Novobiocin 88.92 98.79 Nafetolol �59.32 �59.42
Streptomycin 98.98 99.38 Pentrinitrol �52.48 57.92
Metacycline 93.37 95.69 Molsidomine �11.38 �36.13
Chlortetracycline 98.20 99.03 Berberine �61.32 �50.31
Habekacin 93.90 97.47 Punicine �86.78 �89.22
Nocardicin A 96.98 90.93 Antafenite �81.76 �85.08
Hygromycin 92.56 68.53 Cetovex �94.54 �88.33
Blastmycin 90.76 65.81 Noxiptiline �92.48 �91.48
Gentamicin X 94.64 95.77 Metamfetamine �95.33 �95.17
Maridomycin 94.89 96.90 Closiramine aceturate �90.04 �91.25
Tylosin 98.21 83.12 Octastine �89.63 �94.05
Antibiotic SF-1623 97.25 97.79 Estradiol �86.48 �84.31
Carumonan 99.27 99.72 Tiadenol �89.82 �95.13
YM-13115 99.85 99.99 Metiapine �75.10 �87.32
Actinomycin C3 99.99 100.00 Azabuperone �73.68 �80.47
Antbiotic Ro 21-6150 92.23 87.33 Dienestrol �90.31 �61.77
Antibiotic LL-BM123 alpha 100.00 99.96 Lost �90.38 �80.18
aClassification of compounds by both models, Eq. 12 (non-Stoch.) and Eq. 13 (Stoch.): DP% = [P(Active) � (Inactive)] · 100
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First, TOMOCOMD-CARDD data set has more
than 18 (17), 3 (4), 3 (3), 3 (4), 6 (4), and 5(4) times the
number of chemicals (antibacterial compounds) with
respect to the models reported by Domenech and de
Julián-Ortiz [12], Tomás-Vert et al. [13], Mishra et al.
[14], Cronin et al. [15], Molina et al. [16] and Murcia-
Soler et al. [17], respectively. Furthermore, all models

recognized the existence of antibacterial and non-anti-
bacterial groups of compounds significantly.

The global good classification in the training set of
TOMOCOMD-CARDD models (Eq. 12=91.61% and
Eq. 13=90.75%) was better than most reported LDA
equations (see Table 6). Conversely, a connectivity
function [12], the BLR model [15], and an ANN model

Table 6 Comparison between TOMOCOMD-CARDD method and other chminformatic approaches, for antimicrobial activity

Models’ features to be compareda Structure-Based Classification Models of Antibacterial Activity

Eq. 12 Eq. 13 1 2 3 4 5 6 7 8 9

N total 2030 2030 111 111 664 596 661 661 352 433 433
N antibacterials 1006 1006 60 60 249 307 249 249 219 217 217
Techniqueb LDA LDA LDA ANN ANN LDA LDA BLR LDA LDA ANN
Wilks’k (U-statistics) 0.46 0.47 0.28 – – 0.57 N. R. – 0.45 – –
F 226.61 214.82 20.9 – – 116.6 N. R. – 48.2 – –
D2 4.78 4.53 N. R. – – N. R N. R. – 4.9 – –
p-Level 0.00 0.00 0.00 – – N. R N. R. – 0.00 –
Explored variables 75 75 16 16 62 N. R 167 167 15 62 62
Variables in the model 8 8 7 16 62 3 6 6 7 6 62

Training set
N total 1525 1525 64 64 465 463 661 661 289 305 305
N antibacterials 754 754 34 34 174 242 249 249 174 153 153
Accuracy (%) 91.61 90.75 94.0 89.0 N.R. – 92.6 94.7 91.0 �85.7 �98.7
Families of drugsc Broader range Broader range 3 3 8 – 8 8 8 8 8

Validation method
Validation methodd i i i i i i ii ii i i i
N total 505 505 47 47 199 133 – – 63 128 128
N antibacterials 252 252 26 26 75 65 – – 45 64 64
Predictability (%) 91.49 89.31 92 97.9 � 95 84 93.6 94.3 89.0 �87.5 �91.4
Families of drugsc Broader range Broader range 3 3 8 – – – 5 6 6

aEquations 12 and 13 are reported in this work, models 1 and 2 were reported by Domenech and de Julián-Ortiz [12], model 3 was
reported by Tomás-Vert et al. [13], model 4 was reported by Mishra et al. [14], models 5 and 6 are after Cronin et al. [15], model 7 was
reported by Molina et al. [16] and models 8 and 9 were reported by Murcia-Soler et al. [17]
bLDA linear discriminant analysis, ANN artificial neural network and BLR binary logistic regression
cOnly largely represented families were considered, e.g., methods 1 and 2 used 3 in training quinolones, sulphonamides, and cephalo-
sporins but add only diaminopyridine (1 compound), cephamicins (2), oxacephems (1) and sulfones (1) to predicting series.
dValidation methods are: (i) test set, and (ii) leave-30%-out

Table 7 Results of the virtual screening simulation of novel antimicrobial agents

Chemicalsa DP%b Chemicalsa DP%b

Non-Stoch Stoch Non-Stoch Stoch

2 WQ 3034 99.18 99.82 54 ABT 773 65.51 90.41
6 KRQ 10099 33.56 59.01 64 DK-35C 53.81 74.98
9 HMR 3647 85.02 94.68 67 J 111, 225 �7.42 �10.01
11 TE-802 20.81 68.93 69 LB 10827 100.00 99.99
20 PNU 101099 29.15 14.09 75 Psammaplin A 97.79 98.49
22 Esperezolid 3.79 �31.73 76 Bisbenzilamide eromomycin 100.00 100.00
23 MC 02479 99.13 99.73 77 HKI 9724037 99.99 99.99
29 PA 824 72.05 17.88 78 62.93 38.80
30 PA 1297 82.77 38.14 79 SEP 137199 27.83 36.40
31 PGE 711699 99.80 99.46 80 SEP 32196 74.58 65.96
33 SCH 27 899 100.00 100.00 82 KY-9 63.72 68.94
39 PGE 4175997 �12.45 40.85 83 Ro 62-6091 84.86 77.85
41 NFSQ 91.79 91.65 84 Ro 64-5781 92.69 89.09
47 KB 5290 50.43 75.02 85 VRC 483 �0.47 24.70
52 RU 79115 81.81 84.89 86 9567 567 99.63 94.24

aChemicals 1–33 and 34–87 were taken from Refs. 65, 66, respectively. The molecular structures of these compounds are illustrated in
Table 8 (see ‘‘Electronic Supplementary Material’’ to obtain the complete set of chemicals in this set)
bClassification of compounds by both models, Eq. 12 (non-Stoch.) and Eq. 13 (Stoch.): DP% = [P(active) � (inactive)] · 100
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[17] gave an overall predictability of 94%, 94.7% and
98.7%, respectively, which seem to be larger than the
TOMOCOMD-CARDD functions’ predictability. Nev-
ertheless, it is remarkable that the TOMOCOMD-
CARDD models were derived from training series 23
(1525/64), 2 (1525/661), and 5 (1525/305) times larger

than the series used by Domenech and de Julián-Ortiz
[12], Cronin et al. [15] and Murcia-Soler et al. [17],
respectively.

On the other hand, Golbraikh and Tropsha estab-
lished a set of criteria to assess the predictive ability of
QSAR models, emphasizing that it can only be esti-

Table 8 Structure of new compounds reported in the anti-infective field with antibacterial activity
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mated using an external test set (external validation) of
compounds [69]. However, the model predictability ob-
tained by Cronin et al. [15], was assessed and validated

by the random removal of 30% of the compounds to
form a test set, for which predictions were made from
the model. Conversely, the rest of the models reported

Table 8 (Contd.)
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were validated successfully by means of external pre-
diction series.

In this sense, the overall accuracy in test sets of
TOMOCOMD-CARDD models (Eq. 12=91.49% and
Eq. 13=89.31%) was higher than those in the rest of the
reported LDA equations (see Table 6). Only two non-
linear (ANN) models (Eqs 2 [12] and (3) [13] in Table 6)
have larger predictabilities, but use a much-reduced
number of antibacterial compounds (26 and 75, respec-
tively) than the TOMOCOMD-CARDD approach (252
antibacterial agents).

Another remarkable problem, especially in the case of
classification of heterogeneous series of chemicals, is the
spectrum of structural patterns considered. Without
doubt, the TOMOCOMD-CARDD models reported
consider a great diversity of antimicrobial families (see
Tables S3 and S5 of supporting information to obtain
the complete list of 2030 compounds used in the training
and test sets), taking into account that all previous
studies added just a few compounds to only three to
seven families in the predicting series.

Computational screening of new compounds reported in
the anti-infective field with antibacterial activity

The massive cost of developing new drugs, coupled with
candidate-attrition rates during the discovery and
development processes, highlights the need for a ‘‘see
change’’ in the drug discovery paradigm. Predictive in
silico models could be used for identifying the desired
activity, accelerating the selection process of lead com-
pounds [71]. One of the most important features of any
QSAR model is its ability to predict the desired activity,
for new compounds from databases of chemicals [5–17].
Computational in silico screening (based on QSAR

techniques) of large databases, considering the use of
such models, has emerged as an interesting alternative to
high-throughput screening (HTS) and an important
drug-discovery tool [5–11, 72, 73]. With the aim of
proving the possibilities of the TOMOCOMD-CARDD
approach to detect new lead compounds, we performed
a simulated virtual screening of 87 new organic-chemical
drugs reported in the anti-infective field with antibacte-
rial activity [65, 66]. These chemicals were evaluated by
TOMOCOMD-CARDD models (Eqs. 12 and 13) as
active/inactive. The ability of the models to classify these
compounds and their molecular structures are recorded
in Tables 7 and 8, respectively. Here we illustrate only a
small quantity of theses chemicals. The complete set of
compounds in this set, their molecular structures, as well
as their classification using both models is given as
‘‘Electronic supplementary material.’’

As can be seen, both models (Eqs. 12 and 13) classify
most of the 87 selected compounds correctly, showing an
overall accuracy of 90.81% and 96.55%, respectively.

Some of these chemicals are new lead antibacterial
agents. That is to say, no compound with this kind of
structure was included in the training data set for
developing models (12) and (13). This in silico evalua-
tion is equivalent to the discovery of new lead com-
pounds using the models developed. In this way, new
lead compounds could be designed using the TOMO-
COMD-CARDD method described in the present re-
port.

Concluding remarks

This study has examined a large dataset of compounds
with considerable structural variability, which has been
classified according to their antibacterial activity. In this

Table 8 (Contd.)

269



sense, the collected data of antibacterial chemicals used
in this computational screening is an important tool, not
only for the theoretical research but also for the general
scientific work in this area.

In addition, the TOMOCOMD-CARDD approach
(atom-type and total non-stochastic and stochastic lin-
ear indices) was used to obtain quantitative QSAR-LDA
models that discriminate antibacterial compounds from
inactive ones. The models obtained were significant from
the statistical point of view and compare satisfactorily
with respect to nine of the most useful structure-based
classification equations for antimicrobial selection re-
ported to date. Computational in silico screening of 87
drug-like compounds with antibacterial activity was
carried out by us to prove the usefulness of the present
approach to discover new antibacterial agents from 2D-
structural chemical databases or combinatorial libraries.

Supplementary materials

The complete list of compounds used in the training and
prediction sets, as well as their a posteriori classification
according to models (12) and (13) are available as
Supplementary materials.
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Morales A, Castañedo N, Ibarra-Velarde F, Huesca-Guillen A,
Jorge E, del Valle A, Torrens F, Castro EA (2004) J Comput
Aided Mol Des 18:615–633

52. Marrero-Ponce Y, Huesca-Guillen A, Ibarra-Velarde F (2004)
J Theor Chem (THEOCHEM) DOI: 10.1016/j.theo-
chem.2004.11.027

53. Marrero-Ponce Y, Montero-Torres A, Romero-Zaldivar C,
Iyarreta-Veitı́a I, Mayón Peréz M, Garcı́a Sánchez R (2005)
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